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We prove two new criteria for the sufficiency of the von Neumann condition for
stability of difference schemes. The first criterion is that the von Neumann criterion
is sufficient for stability if a finite power of the amplification matrix is a uniformly
diagonalizable matrix. The second criterion relaxes the uniform diagonalizability
requirement for the amplification matrix: The uniform diagonalizability is needed
only in some subregion of the parameter values, and for the remaining parameter val-
ues, all the eigenvalues of the amplification matrix should be strictly less than unity
in modulus. The numerical investigation of the behavior of the norms of powers
of amplification matrix has pointed to the advisability of introducing a new def-
inition, the uniform stability. We prove constructive criteria for uniform stability.
We investigate the satisfaction of the obtained uniform stability criteria for a num-
ber of well-known difference schemes for the numerical solution of fluid dynamics
problems. c© 2000 Academic Press
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1. INTRODUCTION

The Fourier method is the most popular practical method for stability investigation of
difference schemes in the quadratic norm. It is well known that the widely accepted von
Neumann criterion is only necessary for stability and does not ensure stability of the differ-
ence scheme. At present, there is a vast literature devoted to the sufficient stability conditions
of difference schemes (see, for example, [1–5]). The most general conditions were obtained
in the Kreiss matrix theorem [6]. These conditions, however, proved to be so complex that
it was noted by Kreiss himself [7]: “In fact, it is almost hopeless to apply them directly
to a practical problem.” Therefore, he has introduced in [7] the notion of the dissipative
difference schemes for hyperbolic equations, and he obtained for these schemes stability
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conditions simpler than those of [6]. Other general stability conditions were obtained in
the works of Kato [8] and Buchanan [9]. However, they also proved to be too complex for
practical application.

The following two particular conditions for the sufficiency of the von Neumann criterion
have gained the most widespread acceptance in practice [1]: (1) the amplification matrixG
of difference scheme is a normal matrix and (2) the matrixG is a uniformly diagonalizable
matrix. A generalization of the first condition was obtained in [10]: It was proved that the
von Neumann criterion is sufficient for stability, if a finite power of the amplification matrix
G is a normal matrix. In the present work, we consider a possibility for relatively simple
extensions of the second condition. We show that the von Neumann criterion is sufficient for
stability if a finite power of matrixG is uniformly diagonalizable. In addition, we consider
the case where the matrixG is diagonalizable only in some subregion of the values of
its arguments, and we formulate the conditions for the sufficiency of the von Neumann
criterion. Note that at the formulation of the new criteria for stability of difference schemes,
we have paid the closest attention to the feasibility of their practical realization rather than
to the universality of these criteria. With the advent of the computer algebra systems, the
analytic execution of such procedures as the product of two matrices, the determination of
eigenvalues, the check-up of the normality, and the diagonalizability conditions does already
not need the execution of bulky hand calculations and is realizable for the amplification
matrices of practically important difference schemes.

The numerical computations of‖Gn‖ as a function of the number of time stepsn have
shown that the conventional stability concept is too general in a certain sense, and the
difference schemes with qualitatively different properties prove to be stable. For example,
if the amplification matrixG is normal, then the quantity‖Gn‖will be a decreasing function
of the number of time stepsn. On the other hand, the difference scheme for the wave equation
from [1] is also stable at the Courant numbersκ < 1. However, the quantity‖Gn‖ is an
oscillatory function ofn. The amplitude and period of oscillations depend onκ and increase
unboundedly asκ → 1. It is shown that one can subdivide the stable difference schemes
into two groups. The difference schemes for which‖Gn‖ is an oscillatory function ofn
belong to the first group. The second group is formed by the difference schemes, for which
‖Gn‖ is a nonincreasing function ofn. This result shows that it makes sense to introduce
an additional characteristic of difference scheme.

In this connection, we propose a new definition for stability, namely, the uniform stability
of difference schemes. The conducted investigations of difference schemes have shown that
the class of uniformly stable difference schemes is sufficiently wide. Besides the stable
schemes with normal amplification matrix, the well-known two-cycle MacCormack scheme
and the TVD scheme for the two-dimensional advection equation proved to be uniformly
stable. The well-known concepts of strong stability [1] and uniform correctness [3] are the
closest ones with respect to the uniform stability concept. It is also interesting to note that
one of the conditions for stability of difference schemes with variable coefficients obtained
in [11] is indeed one of the uniform stability criteria for schemes with constant coefficients.

The paper is organized as follows. In Section 2, we formulate the difference Cauchy
problem as well as the von Neumann criterion and prove two new criteria for the sufficiency
of the von Neumann condition.

In Section 3, we carry out a numerical investigation of the behavior of the norms of
powers of the amplification matrix for a number of stable difference schemes. In Section 4,
we present the definition of uniform stability of difference schemes and prove Theorem 3,
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which gives a constructive criterion for uniform stability. The investigation of uniform
stability of specific difference schemes has shown that it is advisable to introduce the concept
of the locally uniform stability, which imposes weaker restrictions on difference scheme.
Theorem 4 gives sufficient conditions for the locally uniform stability. In Section 5, we
investigate the uniform stability of difference schemes for the Euler equations. In Section 6,
we formulate the conclusions.

2. SOME NEW CRITERIA FOR THE SUFFICIENCY

OF THE VON NEUMANN CONDITION

Consider the Cauchy problem for the systems of linear differential equations with constant
coefficients

∂ EU
∂t
= P

(
∂

∂x

)
EU , t > 0, EU (x, 0) = EU0(x), (1)

where EU = {U1(x, t), . . . ,Um(x, t)} is the vector function ofx andt ; m≥ 1, x = (x1, . . . ,

xL), L ≥ 1 is the number of spatial variablesx1, . . . , xL , t is the time,P( ∂
∂x ) is anm×m

matrix whose elements are the polynomials in∂
∂x1
, . . . , ∂

∂xL
, and EU0(x) is a given vector

function.
Let us approximate the system (1) by a(q + 1)th-level difference scheme,q ≥ 1. If

q > 1, then the system of(q + 1)th-level difference equations may be reduced to a system
of two-level equations

C1Eun+1+ C2Eun = 0 (2)

by introducing the new dependent variables [1], whereEun is the difference solution vector
containingm+ q − 1 components,C1 andC2 are some linear (generally matrix) operators
with constant coefficients, which depend on the time stepτ and on the stepsh1, . . . , hL of
the uniform computing mesh along the axesx1, . . . , xL , respectively;Eun = Eu(Ex, nτ), and
n is the number of time level,n = 0, 1, . . . , [T/τ ]; the symbol [a] denotes the integral part
of the numbera.

Assume that the operatorC1 in (2) is invertible. Then we can solve the system of equations
(2) with respect toEun+1,

Eun+1 = SEun, n = 0, 1, . . . , [T/τ ], (3)

whereS is the step operator of difference scheme,S= −C−1
1 C2. The initial condition for

difference scheme (3) is determined from (1)

Eu0 = Eu0(Ex), (4)

whereEu0(Ex) is a given vector function.
As is known, the von Neumann criterion [1–4] is the necessary condition for stability of

the difference Cauchy problem (3), (4),

max
Eξ,i
|λi (Eκ, Eξ)| ≤ 1+ O(τ ), (5)
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where Eξ = Ek · Eh is the wave vector;Ek = (k1, . . . , kL) are the real wavenumbers;Eh =
(h1, . . . , hL), Eκ = (κ1, . . . , κM), whereκm, m= 1, . . . ,M (M ≥ 1) are the nondimen-
sional similarity parameters in the space of variation of which the stability region of differ-
ence scheme is determined; andλi (Eκ, Eξ) are the eigenvalues of the amplification matrixG,
which is the Fourier symbol of the step operatorSentering difference scheme (3).

It is well known [1, 4] that the von Neumann condition is not only necessary but also
sufficient for stability of scheme if the amplification matrixG is a normal matrix (or, which
is the same, the step operatorS is a normal operator):

G∗G = GG∗ (S∗S= SS∗).

An extension of this sufficient condition for stability was obtained in [10] for the case
where there is an integerN ≥ 1 such thatGN is a normal matrix.

It is well known that the class of normal matrices is relatively narrow. The class of diag-
onalizable matrices is a wider class, because the class of diagonalizable matrices includes
the class of normal matrices. That is, each normal matrix is also a diagonalizable matrix.
The next theorem can therefore be considered a generalization of the theorem from [10]. In
addition, the theorem below generalizes another well-known criterion for the sufficiency of
the von Neumann criterion [1]: the case, where the matrixG is a uniformly diagonalizable
matrix.

THEOREM1. Let the following conditions be satisfied.

1. The step operator S is uniformly bounded in some region of the parametersEκ ∈ D:

‖S‖ ≤ M1, Eκ ∈ D.

2. For the Fourier symbol G(Eκ, Eξ) of the step operator S, there exists such a positive
integer N≥ 1 that GN(Eκ, Eξ) is a uniformly diagonalizable matrix at allEξ and the parameter
valuesEκ ∈ D. Then the von Neumann condition for the amplification matrix G(Eκ, Eξ) is the
necessary and sufficient condition for the difference scheme stability forEκ ∈ D.

Proof. Consider the definition for the difference scheme stability [1–3]. The difference
scheme is called stable if there exists such a numberM(t̄) > 0 that

‖Cn,k‖ ≤ M(t̄) (6)

for all 0≤ k ≤ n− 1 andnτ ≤ t̄ , whereCn,k is the transition operator. For the difference
scheme with constant coefficientsCn,k = Sn−k; therefore, the difference scheme will be
stable if the inequality

‖Sn−k‖ ≤ M(t̄) (7)

is satisfied for alln and 0≤ k ≤ n− 1.
As follows from Condition 2, there exists a similarity transformationR(Eκ, Eξ) such that

GN(Eκ, Eξ) = R(Eκ, Eξ)T(Eκ, Eξ)R−1(Eκ, Eξ), (8)
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whereT(Eκ, Eξ) is a diagonal matrix whose diagonal is the eigenvaluesζi (Eκ, Eξ) of matrix
GN(Eκ, Eξ), and

ζi (Eκ, Eξ) = λN
i (Eκ, Eξ), (9)

whereλi (Eκ, Eξ) are the eigenvalues of matrixG(Eκ, Eξ). It is well known [12] that the columns
of the transformation matrixR(Eκ, Eξ) are the generalized eigenvectors of the amplification
matrixGN(Eκ, Eξ). Therefore, one can always chooseR(Eκ, Eξ) in such a way that the following
estimates will be valid:

max
Eξ
‖R(Eκ, Eξ)‖ ≤ C and max

Eξ
‖R−1(Eκ, Eξ)‖ ≤ C, Eκ ∈ D. (10)

Let us estimate the norm of operatorSn−k (0≤ k ≤ n− 1):

‖Sn−k‖ = ‖SpN+δ‖ ≤ ‖SpN‖‖Sδ‖, (11)

wherep = [ n−k
N ] and δ = (n− k)− N[ n−k

N ]. With regard for condition 1 of the theorem
we obtain

‖S(Eκ)δ‖ ≤ max{1, ‖S(Eκ)N−1‖} ≤ M2 = max
{

1,M N−1
1

}
, Eκ ∈ D. (12)

Let us estimate the first factor on the right-hand side of inequality (11):

‖S(Eκ)pN‖ = max
Eξ
‖GpN(Eκ, Eξ)‖ = max

Eξ
‖R(Eκ, Eξ)T p(Eκ, Eξ)R−1(Eκ, Eξ)‖

≤ C2 max
Eξ
‖T p(Eκ, Eξ)‖ ≤ C2

[
max
Eξ
‖T(Eκ, Eξ)‖

]p

, Eκ ∈ D. (13)

We have used the estimates (10) at the derivation of this inequality.
If the von Neumann condition is satisfied, then maxEξ |λi (Eκ, Eξ)| ≤ 1 and consequently

max
Eξ,i
|ζi (Eκ, Eξ)| = max

Eξ,i
|λi (Eκ, Eξ)|N ≤ 1.

BecauseT(Eκ, Eξ) is a diagonal matrix we have

max
Eξ
‖T(Eκ, Eξ)‖ = max

Eξ,i
|ζi (Eκ, Eξ)| ≤ 1. (14)

Substituting the estimates (12)–(14) in inequality (11), we obtain

‖Sn−k‖ ≤ M2C2 (15)

for anyn, 0≤ k ≤ n− 1 andEκ ∈ D.
This completes the proof of the theorem.j

Now consider the difference schemes for which it is impossible to find such an integer
N ≥ 1 thatGN is a normal or uniformly diagonalizable matrix. Denote byÄ the region of
periodicity inEξ of the amplification matrixG(Eκ, Eξ):

Ä = [0, 2π ]L =
L︷ ︸︸ ︷

[0, 2π ] × [0, 2π ] × · · · × [0, 2π ] . (16)
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THEOREM2. Assume that the norm of the step operator S(Eκ) is uniformly bounded,

‖S‖ ≤ M1, Eκ ∈ D, (17)

and the von Neumann condition is satisfied in some region of the parametersEκ ∈ D.
For a givenEκ denote byÄδ(Eκ) the set of the values of vectorξ ∈ Ä, such that

max
i
|λi (Eκ, Eξ)| < 1− δ, Eξ ∈ Äδ(Eκ), (18)

whereλi (Eκ, Eξ) are the eigenvalues of the amplification matrix G(Eκ, Eξ), and δ > 0 is a
constant.

Assume that there is such aδ0 > 0 that the matrix G(Eκ, Eξ) is uniformly diagonalizable
for ξ ∈ Ä\Äδ0(Eκ) and all Eκ ∈ D (Ä\Äδ0(Eκ) is a complement of the setÄδ0(Eκ) in the set
Ä).

Then the difference scheme is stable in D.

Proof. In order to prove the theorem we must show that the quantity

‖Sp(Eκ)‖ = max
Eξ
‖Gp(Eκ, Eξ)‖ (19)

is uniformly bounded for any integerp ≥ 1 andEκ ∈ D. In accordance with the conditions
of the theorem, we rewrite the right-hand side of (19) as

max
Eξ
‖Gp(Eκ, Eξ)‖ = max

{
max
Eξ∈Ä\Äδ0

‖Gp(Eκ, Eξ)‖, max
Eξ∈Äδ0
‖Gp(Eκ, Eξ)‖

}
. (20)

1. Consider the first item within the braces in (20). Because the von Neumann criterion
is satisfied in accordance with the conditions of the theorem, and the matrixG(Eκ, Eξ) is
uniformly diagonalizable atEξ ∈ Ä\Äδ0(Eκ),

max
Eξ∈Ä\Äδ0

‖Gp(Eκ, Eξ)‖ ≤ M0 (21)

for any p ≥ 1 and Eκ ∈ D (M0 is a constant that does not depend onEκ). It is easy to
prove inequality (21) by using the proof of Theorem 1 atN = 1 (see also the proof of
the sufficiency of the von Neumann criterion for difference schemes with a uniformly
diagonalizable amplification matrix in [1]).

2. We now prove the uniform boundedness of the second item within the braces in
formula (20):

max
Eξ∈Äδ0
‖Gp(Eκ, Eξ)‖. (22)

Consider the amplification matrixG(Eκ, Eξ) and make use of the theorem on the spectral
decomposition of operator [12] and the theorem on the Jordan form of a matrix. It follows
from these theorems that there exists a similarity transformationV(Eκ, Eξ), which reduces
the matrixG(Eκ, Eξ) to the Jordan form,

V(Eκ, Eξ)G(Eκ, Eξ)V(Eκ, Eξ)−1 = T(Eκ, Eξ)+ D(Eκ, Eξ), (23)
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whereT(Eκ, Eξ) is a diagonal matrix, andD(Eκ, Eξ) is a nilpotent matrix. The entries on the
diagonal of matrixT(Eκ, Eξ) are the eigenvalues of matrixG (each eigenvalueλi is repeated
mi times, wheremi is the multiplicity ofλi ). We also point to the fact that the matrices
T(Eκ, Eξ) andD(Eκ, Eξ) commute.

As was pointed out in the proof of Theorem 1, one can always chooseV(Eκ, Eξ) in such a
way that the estimates

‖V(Eκ, Eξ)‖ ≤ C1 and ‖V−1(Eκ, Eξ)‖ ≤ C1 (24)

will be valid uniformly in Eξ . Because the diagonal matrixT(Eκ, Eξ) is a normal operator,

‖T(Eκ, Eξ)‖ = max
i
|λi (Eκ, Eξ)|.

Therefore, the estimate

max
Eξ
‖T(Eκ, Eξ)‖ < 1− δ0 (25)

follows from the conditions of the theorem. Consider the quantity

max
Eξ∈Äδ0
‖D(Eκ, Eξ)‖.

Taking the formulas (23)–(25) as well as the boundedness of the step operatorSinto account,
we obtain

max
Eξ∈Äδ0
‖D(Eκ, Eξ)‖ ≤ max

Eξ
[‖T(Eκ, Eξ)‖ + ‖V(Eκ, Eξ)‖‖G(Eκ, Eξ)‖‖V−1(Eκ, Eξ)‖]

≤ 1+ C2
1 M1 ≡ M2. (26)

Write (22) as

max
Eξ∈Äδ0
‖Gp(Eκ, Eξ)‖ = max

Eξ∈Äδ0
‖V−1(Eκ, Eξ)V(Eκ, Eξ)Gp(Eκ, Eξ)V−1(Eκ, Eξ)V(Eκ, Eξ)‖

≤ C2
1 max
Eξ
‖V(Eκ, Eξ)Gp(Eκ, Eξ)V−1(Eκ, Eξ)‖

= C2
1 max
Eξ
‖(T(Eκ, Eξ)+ D(Eκ, Eξ))p‖. (27)

For making the further estimations we take into account the fact thatD is a nilpotent
operator. That is,Dl = 0 at some natural 1< l ≤ m, wherem is the dimension of the
amplification matrixG. In addition, we make use of the commutativity of operatorsT and
D. Then, at sufficiently large values ofp (p ≥ m) we obtain

‖(T + D)p‖ =
∥∥∥∥∥

m−1∑
j=0

(
p

j

)
T p− j D j

∥∥∥∥∥
= pm−1

∥∥∥∥∥T p−m+1

[
m−1∑
j=0

1

pm−1

(
p

j

)
Tm−1− j D j

]∥∥∥∥∥
≤ pm−1‖T‖p−m+1

[
m−1∑
j=0

1

pm−1

(
p

j

)
‖T‖m−1− j ‖D‖ j

]
, (28)
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where(p
j ) are the binomial coefficients. Introduce the notation

max
Eξ∈Äδ0
‖T(Eκ, Eξ)‖ = λ̄ (29)

and take the inequalities (25) and (26) into account. Then the substitution of inequality (28)
in (27) yields the inequality

max
Eξ∈Äδ0
‖Gp(Eκ, Eξ)‖ ≤ C2

1 pm−1λ̄p−m+1

[
m−1∑
j=0

1

pm−1

(
p

j

)
M j

2

]
. (30)

It is easy to see that the expression in square brackets is uniformly bounded at anyp ≥ m.
Therefore,

max
Eξ∈Äδ0
‖Gp(Eκ, Eξ)‖ ≤ M3 pm−1λ̄p−m+1. (31)

Becausēλ < 1− δ0, the right-hand side of inequality (31) tends to zero asp→∞. There-
fore, the quantity on the left-hand side of inequality (31) is uniformly bounded at allp ≥ m.
The boundedness of this quantity atp < m follows from the uniform boundedness of the
norm of the step operatorS (17). Consequently,

max
Eξ∈Äδ0
‖Gp(Eκ, Eξ)‖ ≤ M4. (32)

Substituting the estimates (21) and (32) into formula (20), we obtain that the quantity
maxξ‖Gp(Eκ, Eξ)‖ is uniformly bounded at any integerp ≥ 1 andEκ ∈ D. The theorem is
proved. j

EXAMPLE 1. Consider the one-dimensional heat equation

∂u

∂t
= ν ∂

2u

∂x2
, (33)

whereν = const> 0. Let us approximate (33) by the following explicit three-level scheme
[13]:

un−1
j − 4un

j + 3un+1
j

2τ
= ν un

j+1− 2un
j + un

j−1

h2
, n = 1, 2, . . . . (34)

Introducing the auxiliary dependent variablevn = un+1 we can rewrite the difference
scheme (34) as a system of two two-level difference equations:

un+1
j = vn

j ;
(35)

3vn+1
j − 4vn

j + un
j = 2

ντ

h2

(
vn

j+1− 2vn
j + vn

j−1

)
.

The amplification matrixG obtained by the Fourier method from system (35) has the form

G =
(

0 1

− 1
3

4
3 − 8

3a

)
, (36)
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FIG. 1. Fletcher’s scheme (34). The absolute values of eigenvalues as functions ofξ for κ = 1: (– – –)|λ1(ξ)|,
(——) |λ2(ξ)|.

where

a = κ sin2 ξ

2
, κ = ντ

h2
. (37)

It follows from (36) that the characteristic equation of scheme (34) is a quadratic equation
with real coefficients. The rootsλ1, λ2 of this equation are given by formulas

λ1 = 1

3
(2− 4a+

√
1− 16a+ 16a2), λ2 = 1

3
(2− 4a−

√
1− 16a+ 16a2). (38)

An analysis of the roots (38) shows that the von Neumann condition is satisfied forκ ≤ 1.
For the valuesκ < 1

4(2−
√

3), the zeroesλ1, λ2 are real and different for allξ ; hence, the
matrix G is diagonalizable and the difference scheme (34) is stable.

For 1
4(2−

√
3) ≤ κ ≤ 1 there exist, in the general case, four values of the parameterξ

at which the eigenvalues (38) degenerate, and the Jordan form of matrixG has a nonzero
nilpotent part (see Fig. 1). Let us show that the conditions of Theorem 2 are satisfied in this
region of the values of the parameterκ.

Note that the norm of all degenerate eigenvaluesλα(ξ(κ)) is equal to 1/
√

3. There-
fore, one can take asδ0 in Theorem 2 any quantity from the interval 0< δ0 < 1− 1√

3
− ε

(ε > 0 is arbitrarily small). We takeδ0 = 0.1 for definiteness. It is easy to show that at
(1/4)(2−√3)≤ κ <κ0 (κ0≈ 0.976) the setÄ\Äδ0(κ) consists of two parts,Ä\Äδ0(κ) =
[0, ξ1(κ)] ∪ [2π − ξ1(κ), 2π ], where ξ1 ≈ 2 arcsin0.15√

κ
. At κ0 ≤ κ ≤ 1 the third part

appears,

Ä\Äδ0(κ) = [0, ξ1(κ)] ∪ [2π − ξ1(κ), 2π ] ∪ [ξ2(κ), 2π − ξ2(κ)],

whereξ2 = 2 arcsin
√

κ0
κ

. At all values(1/4)(2−√3) ≤ κ ≤ 1, the amplification matrixG
has two different eigenvalues in the regionÄ\Äδ0(κ) and hence is uniformly diagonalizable.
The conditions of Theorem 2 are satisfied.

Thus, the von Neumann criterion is a sufficient criterion for stability of scheme (34).

3. THE BEHAVIOR OF THE NORMS OF POWERS OF THE AMPLIFICATION

MATRICES FOR STABLE DIFFERENCE SCHEMES

It follows from the stability definition of difference scheme that‖Gn‖must be uniformly
bounded for any integern ≥ 1. However, the character of stability, that is, the behavior of
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the transition operatorCn,k as a function of the number of time stepsn, may be qualitatively
different for stable difference schemes. Let us illustrate this at a number of examples.

EXAMPLE 2. Let us approximate the wave equationutt = c2uxx (c2 = const> 0) by
the following scheme [1]:

vn+1
j − vn

j

τ
= c

wn
j+1/2− wn

j−1/2

h
; wn+1

j−1/2− wn
j−1/2

τ
= c

vn+1
j − vn+1

j−1

h
. (39)

Here,w = cux, v = ut . Introducing the vectorEU = (vn
j , w

n
j )

T , we obtain the amplification
matrix G of the form [1]

G =
(

1 ia

ia 1− a2

)
, (40)

wherea = 2κ sin(ξ1/2), andκ = cτ/h. As is known [1], the difference scheme (39) is
stable at the values of the Courant numberκ <1 and is weakly stable atκ = 1 [14].

Consider the behavior of the quantity‖Gn‖ at κ < 1 (that is, in the stability region).
Assumeξ1 = π for definiteness. To compute the‖Gn(κ, π)‖ let us make use of the formula

‖Gn(κ, π)‖ = ‖(Gn)∗Gn‖1/2. (41)

As can be seen from Figs. 2a–2d, there is an oscillatory variation in the quantity‖Gn(κ, π)‖,
and both the amplitude of oscillations and the mean value of‖Gn(κ, π)‖ increase asκ → 1
(the period of oscillations also increases). Atκ = 1 (Fig. 2e), there is a power law growth of
the quantity‖Gn(κ, π)‖ asn increases in accordance with the definition of weak stability
(‖Gn‖ ∼ nα, α = 1).

EXAMPLE 3. Consider the system of two-dimensional acoustics equations [1]:

ρ0
∂u

∂t
+ ∂p

∂x1
= 0, ρ0

∂v

∂t
+ ∂p

∂x2
= 0,

∂p

∂t
+ ρ0c2

0

(
∂u

∂x1
+ ∂v

∂x2

)
= 0. (42)

Here,ρ0 is the gas density,p is the pressure,c0 is the sound velocity, andu, v are the
components of the gas velocity vector along thex1, x2 axes, respectively. Rewrite system
(42) in vector matrix form,

∂ EU
∂t
+ A

∂ EU
∂x1
+ B

∂ EU
∂x2
= 0, (43)

where

EU =
 u
v

p

 , A =

 0 0 1
ρ0

0 0 0

ρ0c2
0 0 0

 , B =


0 0 0

0 0 1
ρ0

0 ρ0c2
0 0

 . (44)

Let us approximate system (43) with the aid of the following three-stage scheme of the
Runge–Kutta type [15]:

Eu (0) = Eun, Eu (1) = Eu (0) − α1τ Ph Eu (0),
Eu (2) = Eu (0) − α2τ Ph Eu (1), (45)

Eu (3) = Eu (0) − τ Ph Eu (2), Eun+1 = Eu (3).
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FIG. 2. The graphs of the quantity‖Gn(κ, π)‖ as functions ofn for fixed values ofκ: (a)κ = 0.5; (b)κ = 0.8;
(c) κ = 0.95; (d)κ = 0.999; (e)κ = 1.0.

Here,Ph Eu is the difference operator approximating the operator of spatial differentiation
in system (43) of the form

P EU = A
∂ EU
∂x1
+ B

∂ EU
∂x2

.

We take for definiteness the approximation by central differences:

Ph Eu jk = A
Eu j+1,k − Eu j−1,k

2h1
+ B
Eu j,k+1− Eu j,k−1

2h2
. (46)

The quantitiesα1, α2 in (45) are the weight parameters. The valuesα1 = α2 = 1
2 ensure

the second approximation order of scheme (45), in time [15]. Eliminating the intermediate
quantitiesEu (1) andEu (2) from (45), we obtain a two-level difference scheme,

Eun+1 = SEun,
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where the step operatorShas the form

S= I − τ Ph + α2(τ Ph)
2− α1α2(τ Ph)

3. (47)

The amplification matrix corresponding to operator (47) is

G = I − i Z − α2Z2+ iα1α2Z3, (48)

whereZ is the result of the Fourier transformation of operatorτ Ph,

Z = d1A+ d2B, (49)

dα = (τ/hα) sinξα, andα = 1, 2. The eigenvalues of matrix (49) are

λ1 = 0, λ2,3 = ±c0

√
d2

1 + d2
2 .

Letµl , l = 1, 2, 3, be the eigenvalues of matrixG. Then

µ1 = 1, µ2,3 = 1− α2c2
0

(
d2

1 + d2
2

)∓ ic0

√
d2

1 + d2
2

[
1− α1α2c2

0

(
d2

1 + d2
2

)]
. (50)

From the inequalities|µl | ≤ 1, l = 1, 2, 3, we obtain the von Neumann stability condition
in the form

√
κ2

1 + κ2
2 ≤

1

α1

[
2α1− α2+ (α2

(
α2− 4α1+ 8α2

1

)0.5

2α2

]0.5

, (51)

whereκ1 = c0τ/h1, andκ2 = c0τ/h2. At α1 = α2 = 0.5 we obtain from this the condition

√
κ2

1 + κ2
2 ≤ 2. (52)

Let us prove that the condition (51) is the sufficient stability condition for scheme (45),
(46). It is easy to see that the eigenvalues of matrixG are different at almost all values
of ξ1, ξ2, except for the pointsξ1 = ξ2 = kπ (k = 0, 1, . . .). At pointsξ1 = ξ2 = kπ , the
matrixG coincides with the identity matrix. Therefore, matrixG is unformly diagonalizable.
Consequently, the von Neumann condition (51) is the sufficient stability condition for
difference scheme (45), (46).

The numerical computations of the quantity‖Gn‖ for α1 = α2 = 0.5 in (45) and different
values ofκ1, κ2 andξ1, ξ2 are presented in Fig. 3. It can be seen that as in Example 2, an
oscillatory behavior of the quantity‖Gn‖ takes place. The characteristics of oscillations
depend both on the values of the Courant numbersκ1, κ2 and on the valuesξ1, ξ2.

We have presented above the examples of difference schemes, for which the behavior of
the quantity‖Gn‖ as a function ofn is oscillatory. There is, however, a class of difference
schemes for which the quantity‖Gn‖ is a nonincreasing function ofn.
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FIG. 3. The Runge–Kutta scheme (45). The graphs of‖Gn‖ as functions of the numbern of time steps:
(a)κ1 = 0.8, κ2 = 1.0, ξ1 = 0.96π, ξ2 = 0.1π , ρ0c0 = 2.0; (b)κ1 = 1.7, κ2 = 1.0, ξ1 = ξ2 = 0.99π , ρ0c0 = 1

3
.

EXAMPLE 4. We again consider the difference scheme from Example 3. It is
well known (see, for example, [16]) that the system (42) may be symmetrized by intro-
ducing a new vector of dependent variablesEv by formulaEv = L EU , where

L =


√
ρ0 0 0

0
√
ρ0 0

0 0 1
c0
√
ρ0

 . (53)

From (43) we obtain for vectorEv the system

∂Ev
∂t
+ A1

∂Ev
∂x1
+ B1

∂Ev
∂x2
= 0, (54)

where

A1 = L AL−1 =
 0 0 c0

0 0 0
c0 0 0

 , B1 = L BL−1 =
0 0 0

0 0 c0

0 c0 0

; (55)

thus, matricesA1 andB1 are symmetric. Let us replaceEU with Ev and approximate system
(54) with the aid of the three-stage Runge–Kutta scheme (45). Because the matricesA1 and
B1 are obtained fromA andB with the aid of the similarity transformations (55), the form
of the von Neumann stability condition (51) does not change in new variablesEv. The matrix
Z in (48) now has the form

Z = d1A1+ d2B1 =

 0 0 a1

0 0 a2

a1 a2 0

 ,
whereak = κk sinξk, k = 1, 2. Thus, matrixZ is a real symmetric matrix; hence, the matrix
G (48) is also normal [17]. Therefore, the von Neumann necessary stability condition (51)
is also sufficient for stability of scheme (45) approximating the symmetric system (54). We
present in Fig. 4 the graph of‖Gn‖ as a function ofn. It can be seen that‖Gn‖ = 1 for all
n. The same behavior of‖Gn‖ takes place at other values ofκ1, κ2, andξ1, ξ2.
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FIG. 4. The Runge–Kutta scheme (45) for the symmetrized acoustics equations (54). The graph of‖Gn‖ as
a function of the numbern of time steps forκ1 = 0.8, κ2 = 1.0, ξ1 = 0.96π, ξ2 = 0.1π .

It is interesting to note that the maximum amplitudes of the oscillations of‖Gn‖ for
the nonsymmetrized difference scheme (45), (46) may easily be estimated by using the
following considerations. With regard for (55) we can write the expression for matrix (48)
asG = L−1G0L, whereG0 is a normal matrix, and‖G0‖ ≤ 1 under the satisfaction of the
von Neumann condition (51). Then the following estimates are valid with regard for (53):

‖Gn‖ = ∥∥L−1Gn
0L
∥∥ ≤ ‖L−1‖ · ‖L‖

=
[

1√
ρ0

max(1, ρ0c0)

]
·
[√
ρ0 max

(
1,

1

ρ0c0

)]
= max(1, ρ0c0) ·max

(
1,

1

ρ0c0

)
. (56)

Note that the computational results presented in Fig. 3 agree with estimate (56): the mag-
nitude of the quantity‖Gn‖ does not exceed the right-hand side of (56).

EXAMPLE 5. Consider the Harten scheme [18] (a TVD variant of the Lax–Wendroff
scheme from [1]) for the two-dimensional advection equation

∂u

∂t
+ A

∂u

∂x1
+ B

∂u

∂x2
= 0, (57)

whereA andB are the scalar constants. The scheme under study has the form

un+1 = un − τ Lx Aun; un+2 = un+1− τ L y Bun+1;
(58)

un+3 = un+2− τ L y Bun+2; un+4 = un+3− τ Lx Aun+3.

The operatorLx is again used at the(n+ 5)th time level, etc. The operatorsLx and
L y approximate the operators∂/∂x1 and∂/∂x2, respectively. Eliminating the intermediate
quantitiesun+1, un+2, andun+3, we obtain the difference equation of the form

un+4 = Sun, (59)

where

S= (I − τ Lx A)(I − τ L y B)2(I − τ Lx A), (60)

I is the identity operator. Introducing the new dependent variablesvn, wn,qn by formu-
las un+1 = vn, vn+1 = wn, wn+1 = qn, we can write Eq. (59) as a system of difference
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equations,

qn+1 = Sun, un+1 = vn, vn+1 = wn, wn+1 = qn, (61)

or in the vector matrix form:

Eun+1 = C Eun,

where

Eun =


qn

un

vn

wn

 , C =


0 S 0 0
0 0 I 0

0 0 0 I

I 0 0 0

 .
The amplification matrixG obtained by the Fourier method has the form

G =


0 a+ ib 0 0

0 0 1 0
0 0 0 1
1 0 0 0

 , (62)

wherea+ ib is the Fourier symbol of operatorS (60), a andb are the real functions of
variablesEξ and Eκ = (κ1, κ2), κ1 = Aτ/h1, andκ2 = Bτ/h2. It is easy to show that the
characteristic equation of matrixG has the formλ4 = a+ ib. It follows from here that
the von Neumann criterion has the forma2+ b2 ≤ 1. In order to check the sufficiency of
the von Neumann condition for the TVD scheme (58), we make use of the results of [10],
namely, show that there exists a natural numberN such that the condition for the normality
of matrix GN is satisfied:

(GN)∗GN − GN(GN)∗ = 0. (63)

The use of the computer algebra systems proved to be very efficient for the check-up of
condition (63), because they enable us to perform a symbolic computation of the left-hand
side of Eq. (63) on a computer. For this purpose we have used the computer algebra system
Mathematica 3.0[19]. For the case of the amplification matrixG of the form (62) the
program for the check-up of the satisfaction of condition (63) written in the language of the
Mathematica 3.0system has the following form:

G = {{0, a + I b,0,0}, {0,0,1,0}, {0,0,0,1}, {1,0,0,0}};
kfin = 5;

m = Length[G]; Gzero = Table[0, {i, m}, {j, m}];
Do[G0 = MatrixPower[G, kj];

Print["Gˆ", kj, " = ", MatrixForm[G0]];
gs = ComplexExpand[Conjugate[Transpose[G0]]];

Print["(Gˆ", kj, ")* = ", MatrixForm[gs]];
gd = G0.gs - gs.G0;

If[gd === Gzero, Print["Matrix Gˆ",kj, "is normal"];

Break[]],{kj, kfin}];
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FIG. 5. The TVD scheme (58). The graph of‖Gn‖ as a function of the numbern of time steps fora =
0.7, b = 0.5.

The input data for this program are the matrixG and the maximum powerN ≥ 1 (N= kfin

in our program) up to which the check-up of condition (63) is performed. The computation
by the above program continues until condition (63) is satisfied at someN.

It turns out in the case of scheme (58) that condition (63) is satisfied atN = 4, be-
causeG4 = (a+ ib)I . Thus, in accordance with the theorem from [10] the von Neumann
necessary stability condition is also sufficient for stability of scheme (58).

Note thatG4 is a diagonal matrix; therefore, the sufficiency of the von Neumann criterion
also follows from Theorem 1.

The given matrixG of course has a sufficiently simple form, so that the check-up of
condition (63) might be done without using the systemMathematica. However, in cases of
sufficiently complex difference schemes approximating the systems of differential equations
the dimension of the amplification matrixG may be large, and the entries of matrixG can be
very complex functions of variablesEκ andEξ . In such cases, the computation of the left-hand
side of (63) for the increasing valuesN (N = 1, 2, 3, . . .) proves to be a computationally
intensive problem, which is practically not feasible using “manual” calculations, even for
comparatively simple difference schemes.

We show in Fig. 5 the graph of‖Gn‖ as a function ofn for a = 0.7, b = 0.5. The function
‖Gn‖ has a similar form also for other values ofa andb from the stability region. It can be
seen that‖Gn‖ is a nonincreasing function ofn, and the values of‖Gn‖ vary only at the
values ofn, which are the multiples of four.

4. UNIFORM STABILITY OF DIFFERENCE SCHEMES

The examples presented in the foregoing section show that it makes sense to introduce
an additional characteristic of difference scheme, namely the concept of uniform stability.

DEFINITION 1. We shall say that the difference scheme is uniformly stable in some
region of the parametersEκ ∈ D, if:

(1) the step operatorS(Eκ) is uniformly bounded:

‖S(Eκ)‖ ≤ M, Eκ ∈ D;

(2) there is a natural numbern0 such that at all values of the wave vectorEξ , the amplifi-
cation matrixG(Eκ, Eξ) satisfies the condition:

‖Gn+1(Eκ, Eξ)‖ ≤ ‖Gn(Eκ, Eξ)‖ atn ≥ n0, Eκ ∈ D. (64)
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Remark. It is easy to show that a uniformly stable difference scheme is stable in the
conventional sense. Let us take maxξ of the both sides of inequality (64). We obtain the
following inequality for the transition operatorCn,0:

‖Cn+1,0‖ ≤ ‖Cn,0‖ atn ≥ n0.

Because the step operatorS is bounded,

‖Cn0,0‖ ≤ ‖S‖n0 ≤ Mn0.

Hence,

‖Cn,0‖ ≤ Mn0 for all n ≥ 1.

Let us now elucidate the question of the conditions which a difference scheme should
satisfy in order to be uniformly stable. Consider a difference scheme with constant co-
efficients whose amplification matrixG(Eκ, Eξ) is normal and the von Neumann condition
maxξ |λi (Eκ, Eξ)| ≤ 1, κ ∈ D is satisfied. Such a difference scheme obviously will be stable.
BecauseG(Eκ, Eξ) is normal, it follows from relation

‖G(Eκ, Eξ)‖ = max
i
|λi (Eκ, Eξ)| (65)

and the von Neumann criterion that

‖G(Eκ, Eξ)‖ = max
i
|λi (Eκ, Eξ)| ≤ 1 for all ξ ; Eκ ∈ D. (66)

Then we have the following relation for the powers of the matrixG(Eκ, Eξ):

‖Gn+1(Eκ, Eξ)‖ ≤ ‖G(Eκ, Eξ)‖ ‖Gn(Eκ, Eξ)‖ = max
i
|λi (Eκ, Eξ)| ‖Gn(Eκ, Eξ)‖

≤ ‖Gn(Eκ, Eξ)‖, Eκ ∈ D, n = 0, 1, 2, . . . . (67)

That is, the norm of thenth degree of the amplification matrixG(Eκ, Eξ) is a nonincreasing
function of the exponentn. Consequently, the difference schemes with the normal amplifi-
cation matrix will be uniformly stable according to Definition 1.

Just the difference scheme (45) for the symmetrized acoustics equations, which was
considered in Example 4, is such a difference scheme.

More general criteria for uniform stability of difference schemes are given by the follow-
ing theorem.

THEOREM 3. The difference scheme is uniformly stable in the regionEκ ∈ D, if any of
the following criteria for the amplification matrix G(Eκ, Eξ) is satisfied.

Criterion 1. The eigenvaluesγi (Eκ, Eξ) of matrix G∗(Eκ, Eξ)G(Eκ, Eξ) satisfy the condition

max
Eξ,i
|γi (Eκ, Eξ)| ≤ 1, Eκ ∈ D.

Criterion 2.
1. Criterion 1 is satisfied in a subregionEξ ∈ Ä1(Eκ) of the periodicity region of the

amplification matrix G.
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2. The following conditions are satisfied in the complement of the setÄ1 in the setÄ
(Eξ ∈ Ä\Ä1):

(a) the matrix G(Eκ, Eξ) is uniformly diagonalizable;
(b) there is a unique maximum eigenvalueλ1(Eκ, Eξ) of matrix G so that for all eigen-

valuesλi

|λi (Eκ, Eξ)| < |λ1(Eκ, Eξ)|, if i 6= 1, max
i 6=1

max
Eξ∈Ä\Ä1

|λi (Eκ, Eξ)|
|λ1(Eκ, Eξ)|

< 1− δ1, Eκ ∈ D; (68)

(c)

max
Eξ∈Ä\Ä1

|λ1(Eκ, Eξ)| < 1− δ2, Eκ ∈ D, (69)

whereδ1 > 0, δ2 > 0 are some constants.

Remark. If the first criterion is satisfied then one can setn0 = 1 in Definition 1.

Proof.

I. We make use of relation (41). Applying formulas (41) and

‖G∗G‖ = max
k
γk (70)

to the amplification matrixG(Eκ, Eξ) we obtain

‖G(Eκ, Eξ)‖ =
(

max
i
γi (Eκ, Eξ)

)1/2
. (71)

Hence,

‖S(Eκ)‖ = max
Eξ
‖G(Eκ, Eξ)‖ = max

Eξ

[
max

i
γi (Eκ, Eξ)

]1/2
=
[
max
Eξ,i

γi (Eκ, Eξ)
]1/2

≤ 1. (72)

The condition of uniform stability (64) is now easily proved:

‖Gn+1(Eκ, Eξ)‖ ≤ ‖S(Eκ)‖ ‖Gn(Eκ, Eξ)‖ ≤ ‖Gn(Eκ, Eξ)‖ for all n ≥ 1. (73)

II. Because the matrixG is diagonalizable,G = B−1J B, whereJ is a diagonal matrix.
Then

Gn = (B−1J B)(B−1J B) · · · (B−1J B)︸ ︷︷ ︸
n factors

= B−1Jn B. (74)

The matrix Jn is a diagonal matrix whose diagonal is filled with thenth powers of the
eigenvalues of matrixG. Let k be the multiplicity ofλ1. Then one can presentJn in the
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form

Jn = λn
1



k columns︷ ︸︸ ︷
1

. . .

1

0

εn
2
. . .

0 εn
s


, (75)

whereεi = λi /λ1. It follows from condition (68) that

|εi | < 1− δ1. (76)

The expression (75) forJn may be written as the sum of two matrices:

Jn = λn
1





k columns︷ ︸︸ ︷
1

. . .

1

0

0
. . .

0 0


+



k columns︷ ︸︸ ︷
0

. . .

0

0

εn
2
. . .

0 εn
s




≡ λn

1

[
T + O(εn)

]
, ε = 1− δ1. (77)

The nonzero entries of matrixO(εn) tend to zero atn→∞ asεn. Substituting (77) in
formula (74), we obtain

Gn = λn
1

[
B−1T B+ B−1O(εn)B

]
(78)

and

Gn+1 = λn+1
1 [B−1T B+ B−1O(εn+1)B]. (79)

Let us estimate the norm ofGn from below and the norm ofGn+1 from above:

‖Gn‖ = |λ1|n‖B−1T B+ B−1O(εn)B‖ ≥ |λ1|n[‖B−1T B‖ − ‖B−1O(εn)B‖].

It follows from here that

‖Gn‖ ≥ |λ1|n[‖B−1T B‖ − M1ε
n], (80)

whereM1 is a positive constant of the order of unity, which may be chosen independent
of Eξ .
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We obtain for‖Gn+1‖ that

‖Gn+1‖ = |λ1|n+1‖B−1T B+ B−1O(εn+1)B‖
≤ |λ1|n+1[‖B−1T B‖ + ‖B−1O(εn+1)B‖].

Therefore,

‖Gn+1‖ ≤ |λ1|n+1[‖B−1T B‖ + M2ε
n+1]. (81)

Let us now prove that the condition

‖Gn+1(Eκ, Eξ)‖ ≤ ‖Gn(Eκ, Eξ)‖, κ ∈ D (82)

is satisfied beginning with a sufficiently large value ofn for all values of vectorEξ ∈ Ä\Ä1.
It follows from inequalities (80) and (81) that condition (82) is satisfied if the following
inequality is valid:

|λ1|n+1[‖B−1T B‖ + M2ε
n+1] ≤ |λ1|n[‖B−1T B‖ − M1ε

n]. (83)

To prove inequality (83), let us divide both its sides by|λ1|n and rewrite it as

(1− |λ1|)‖B−1T B‖ ≥ (M1+ M2|λ1|ε)εn. (84)

In accordance with condition (69) of the theorem, we have the inequality|λ1(Eκ, Eξ)|< 1− δ2.
Therefore, the inequality (84) is satisfied beginning with a sufficiently large valuen = n0,
and consequently the condition (82) is satisfied.

The validity of inequality (82) forEξ ∈ Ä1 andn ≥ 1 follows from the first condition of
Criterion 2.

The theorem is proved.

Let us compare the uniform stability concept with some known stability definitions. The
concept ofstrong stabilitywas proposed in [1]. The difference scheme is called strongly
stable if there exists such a self-adjoint positive definite operatorH so that

‖un+1‖H ≤ (1+ K τ)‖un‖H , (85)

whereun is the solution at thenth time level, and‖ · ‖H is the norm determined by the
operatorH and is equivalent to the originalL2 norm,

‖u‖2H = (u, Hu), K−1
1 ‖u‖ ≤ ‖u‖H ≤ K1‖u‖,

whereK andK1 are positive constants.
The definition ofuniform correctnessof the difference Cauchy problem, as given in [3],

is

‖S‖ ≤ 1+ Mτ, M > 0, (86)

whereS is the step operator. It is easy to prove that the strong stability of a difference
scheme follows from its uniform correctness:

‖un+1‖ ≤ ‖S‖ ‖un‖ ≤ (1+ Mτ)‖un‖. (87)

Condition (87) coincides with condition (85) forH ≡ I .
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It is obvious that on the one hand the uniform stability condition (64) imposes weaker
limitations on the difference scheme than the condition of strong stability (85) and the
condition of uniform correctness (86), because condition (64) admits the growth of the
norm of the transition operatorCn,0 in the initial interval of time stepsn. This difference
plays an important role, because the norms of the transition operators for a number of
practically important difference schemes demonstrate just such a behavior: the growth in
the initial interval 1≤ n ≤ n0 and the decay atn ≥ n0.

On the other hand, forn ≥ n0 the uniform stability condition imposes more severe limita-
tions, because it requires the satisfaction of condition (64) at allEξ . In contrast, the condition

‖Cn+1,0‖ ≤ ‖Cn,0‖

does not eliminate the violation of condition (64) at some values ofEξ , which may lead to
spurious oscillations with a finite wavelength.

From the previously known results, we note also the stability conditions for difference
schemes with variable coefficients obtained in [11]. The first of the conditions has the form

G∗(Eκ, Eξ)G(Eκ, Eξ) ≤ I for all Eκ, Eξ, (88)

whereG(Eκ, Eξ) is the amplification matrix,I is the identity matrix, andEx is the vector of
spatial variables. For difference schemes with constant coefficients, condition (88) means
that

‖G(Eκ, Eξ)‖2 ≤ 1 for all Eξ ;

hence,‖S‖ ≤ 1. Therefore, the difference scheme is uniformly stable atn0 = 1 when (88)
is satisfied, and the first criterion of Theorem 3 gives a constructive method for checking
condition (88).

Let us illustrate the application of Theorem 3 for a number of the specific difference
schemes. Consider the TVD scheme from Example 5. It is easy to show that the eigenvalues
of matrix G∗G for this scheme satisfy the equation

max
i
|γi | = max(1,a2+ b2).

Consequently, under the satisfaction of the von Neumann conditiona2+ b2 ≤ 1, the first
criterion of Theorem 3 is satisfied. Therefore, this scheme is uniformly stable.

EXAMPLE 6. Let us consider the two-cycle MacCormack scheme [20] for the advection
equation (57). The scheme under study has the form

un+1 = L1un, un+2 = L2un+1. (89)

The step operatorL1 is again applied at the(n+ 3)rd time level, and the step operatorL2

is applied at the(n+ 4)th time level; that is, the operatorsL1 andL2 are applied cyclically
with period 2τ . The forms of the operatorsL1 andL2 are presented in [20–22]. Substituting
the expression forun+1 from the first equation of (89) in the second equation, we obtain a
three-level difference scheme of the form

un+2 = L2L1un. (90)
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The amplification matrixG corresponding to (90) has the form

G =
(

0 1
a+ ib 0

)
, (91)

wherea and b are the real functions of the variablesEξ and Eκ = (κ1, κ2); κ1 = Aτ/h1,
κ2 = Bτ/h2. In view of the bulky form of the expressions fora andb, we do not present
them here (the explicit form ofa andb may be found in [22]).

It was shown in [21, 23] with the aid of a symbolic-numerical method that the necessary
condition for stability of scheme (90) has the form

κ
2/3
1 + κ2/3

2 ≤ 1. (92)

A strict proof of condition (92) was given in the works [24, 25]. It is easy to check that
matrix G (91) is not a normal matrix. However, the matrixG2 is normal, because

G2 = (a+ ib)

(
1 0
0 1

)
.

Thus, the two-cycle MacCormack scheme satisfies the conditions of the theorem from
[10]. Therefore, the von Neumann condition (92) is sufficient for stability, and the scheme
is stable in the overall region (92) of the parametersκ1, κ2.

Let us prove the uniform stability of this scheme. A direct computation gives

G∗G =
(

a2+ b2 0
0 1

)
.

We obtain from here

‖G‖2 = max(1,a2+ b2) = 1

under the satisfaction of the von Neumann condition. Although the amplification matrix
(91) is not normal, the difference scheme (90) is nevertheless uniformly stable withn0 = 1
under the satisfaction of the von Neumann condition.

EXAMPLE 7. Let us again consider the difference scheme (39) for the wave equation.
Let us check the satisfaction of criterion 1 of Theorem 3. The eigenvalues of matrixG∗G
are easily found and have the form

γ1 = 1

2
(2+ a4+ a2

√
4+ a4), γ2 = 1

2
(2+ a4− a2

√
4+ a4)),

wherea = 2κ sin(ξ/2). This scheme was shown above to be stable at 0< κ < 1. However,
at 0< ξ < 2π the eigenvalueγ1 is larger than unity and, hence, the first criterion of Theorem
3 is not satisfied.

Consider the second criterion. It is easy to show that at 0< κ < 1 the amplification
matrix G is diagonalizable, but at allξ it has two complex conjugate eigenvalues

λ1,2 = 2− a2

2
± ia

2

√
4− a2
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(|λ1| = |λ2| = 1). Thus, the second criterion of Theorem 3 is also not satisfied. The numer-
ical results presented in Figs. 2a–2d also show that this difference scheme is not uniformly
stable at least forn ≤ 100.

Let us prove that difference scheme (39) is not uniformly stable at anyn0. The amplifi-
cation matrixG may be presented in the form

G = RT R−1, (93)

where

R=
(
− 1

2

√
4− a2− 1

2 ia 1
2

√
4− a2− 1

2 ia

1 1

)
,

and

T =
(
λ1 0

0 λ∗1

)
, λ1 = 1

2
(2− a2+ i

√
4− a2).

Write the expression forλ1 as

λ1 = eiϕ1, ϕ1 = arctan

√
4− a2

2− a2
.

Then we obtain the expression forGn,

Gn = RTn R−1 (94)

Tn =
(

einϕ1 0

0 e−inϕ1

)
,

andGn+1 may be presented as

Gn+1 = RTn R−1G. (95)

Becauseϕ1 is a continuous function ofξ1, the set of rational numbers will be everywhere
dense on the set of theϕ1 values. Choose such aξ0 ∈ (0, 2π) thatϕ1(ξ0) = 2πm1/m2, m1,
andm2 are the natural numbers. Then atn = km2, we obtain thatTn = I , and

‖Gn(ξ0)‖ = 1 (96)

and

‖Gn+1(ξ0)‖ = ‖G(ξ0)‖ > 1. (97)

Hence,‖Gn+1(ξ0)‖ > ‖Gn(ξ0)‖ at arbitrarily largen = km2; therefore, condition (64) is
not satisfied.

EXAMPLE 8. Let us again consider Fletcher’s scheme (34). Let us show that this scheme
is not uniformly stable. Numerical computations have shown that for all valuesκ ≤ 1,
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FIG. 6. Fletcher’s scheme (34). The graphs of‖Gn‖ as functions of the numbern of time steps: (a)ξ = 0;
(b) κ = 0.8, ξ = π ; (– – –) the graph of the functione−κξ

2n atκ = 0.8, ξ = π .

the first criterion of Theorem 3 is not satisfied, because maxξ,i γi (κ, ξ) > 1, γi are the
eigenvalues of the matrixG∗G. Consider the second criterion of Theorem 3.

1. For the values of the parameterκ < 1
4(2−

√
3), there exist different positive eigen-

values (38). However, atξ = 0 the maximum eigenvalueλ1(κ, 0) becomes to be equal to
unity, and condition (69) is not satisfied.

The numerical results presented in Fig. 6a show that atξ = 0 the norm‖Gn(κ, 0)‖, as
a function ofn, is an increasing function ofn and tends asymptotically to certain finite
limit: lim n→∞ ‖Gn(κ, 0)‖ = C0. Consequently, the scheme (34) is not uniformly stable for
κ < (1/4)(2−√3).

2. In the region(1/4)(2−√3) < κ ≤ 1, there exists an interval of values of the variable
ξ ∈ (ξ1, ξ2) (see Fig. 7b) in which the eigenvalues become complex conjugate and|λ1| =
|λ2|. Therefore, condition (69) of Theorem 3 is not satisfied. The numerical computations
show that there exists a sequence of the time step numbersn1, n2, . . . , at which the uniform
stability condition (64) is violated atξ ∈ (ξ1, ξ2) (see Fig. 6b). The absence of uniform
stability atξ ∈ (ξ1, ξ2) can be proved strictly similarly to the proof made in Example 7.

One can illustrate at this example the practical importance of the uniform stability concept.
As is known [3], the solution of the Cauchy problem

∂u

∂t
= ν ∂

2u

∂x2
, −∞ < x <∞

(98)
u(x, 0) = u0(x), −∞ < x <∞,

FIG. 7. Fletcher’s scheme (34). The absolute values of eigenvalues as functions ofξ : (– – –) |λ1(ξ)|, (——)
|λ2(ξ)|; (a)κ = 1

4
(2− 31/2); (b) κ = 1.3

4
(2− 31/2).
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whereu0(x) is a given function, may be presented in the form

u(x, t) = S(t, 0)u0(x), (99)

whereS(t, 0) is the transition operator whose form may be obtained with the aid of the
Fourier transform of (33). Because the system of difference equations (35) contains two
equations, it is necessary for the computation of‖S(t, 0)‖ to use also a system of two
equations while studying the properties of the corresponding transition operatorS(t, 0). The
first equation of system (35) introduces a shift in time:v(x, t) = u(x, t + τ). Therefore,
we consider instead of a single equation (33) the system{

v(x, t) = u(x, t + τ);
∂u
∂t = ν ∂

2u
∂x2 .

(100)

The Fourier transform of system (100) leads to the expression for‖S(t, 0)‖L2 [3],

‖S(t, 0)‖L2 = sup
k
‖S(k, t, 0)‖ = sup

k
e−νk2t = 1, (101)

wherek is a real wavenumber,−∞ < k <∞. The expression for the matrixS(k, t, 0) is
obtained as follows. LetCm(k, t) be the Fourier coefficients of functionsu(x, t), v(x, t),
m= 1, 2. Then

C1(k, t) = e−νk2tC1(k, 0), C2(k, t) = e−νk2tC2(k, 0), (102)

whereC2(k, 0) = C1(k, 0)e−νk2τ with regard for the definition of the functionv(x, t). We
obtain from (102)

S(k, t, 0) = diag
(
e−νk2t , e−νk2t

)
. (103)

Because the matrixS (103) is a normal matrix, it is obvious that

‖S(k, t, 0)‖ = e−νk2t , (104)

which is reflected in formula (101).
Thus, by virtue of the construction of the transition operatorS(t, 0) (see (99)) we can

see that the quantity‖S(k, t, 0)‖ is a continuous analog of the quantity‖Gn‖. Therefore,
in the case of very accurate difference scheme, the quantities‖S(k, t, 0)‖ and‖Gn‖ should
be close to each other. Assumingt = nτ in (104), we can rewrite formula (104) as

‖S(k, nτ, 0)‖ = e−κξ
2n, (105)

whereκ = ντ/(h2), ξ = kh. It follows from (105) that the quantity‖S(k, nτ, 0)‖ is a
monotone decreasing function ofn, and‖S(k, 0, 0)‖ = 1. The graph of the functione−κξ

2n

is shown in Fig. 6b. It can be seen that the behavior of the quantity‖Gn‖ differs significantly
from the behavior of the quantity‖S(k, nτ, 0)‖. This difference is striking atξ = 0, since
‖S(0, t, 0)‖ ≡ 1, but it is seen from Fig. 6a that‖Gn‖ tends asymptotically to a constant
exceeding two.
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We have shown that scheme (34) is not uniformly stable. The behavior of‖Gn(κ, ξ)‖ is
nevertheless qualitatively different in two intervals of the parameterκ considered above.

At 1
4(2−

√
3) ≤ κ ≤ 1, the scheme oscillations have the finite wavelengths (ξ ∈ (ξ1, ξ2)).

If κ < 1
4(2−

√
3), then the violation of the uniform stability condition occurs only in small

neighborhoods of the valuesξ = 0 andξ = 2π , and the corresponding scheme oscillations
have the large wavelengths. Because the disturbances with finite wavelengths play the most
important role in many physical processes, the long-wave scheme oscillations may prove
to be insignificant.

Therefore, it makes sense to introduce the concept of a locally uniform stability.

DEFINITION 2. A stable difference scheme is called locally uniformly stable if at arbi-
trarily smallδ > 0 the amplification matrixG(Eκ, Eξ) satisfies the condition

‖Gn+1(Eκ, Eξ)‖ ≤ ‖Gn(Eκ, Eξ)‖ (106)

at Eξ ∈ [δ, 2π − δ]L andn ≥ n0(δ), where

[δ, 2π − δ]L =
L︷ ︸︸ ︷

[δ, 2π − δ] × · · · × [δ, 2π − δ],

L is the dimension of vectorEξ , andn0(δ) may go to∞ asδ→ 0.
The conditions for which a stable difference scheme is locally uniformly stable are given

by the following theorem.

THEOREM4. A stable difference scheme is locally uniformly stable in the regionEκ ∈ D
if at all values of the wave vectorEξ ∈ [δ, 2π − δ]L , whereδ > 0 is an arbitrarily small
quantity, the following conditions are satisfied:

(1) the matrix G(Eκ, Eξ) is diagonalizable;
(2) there exists the unique maximum eigenvalueλ1(Eκ, Eξ) of matrix G(Eκ, Eξ):

|λi (Eκ, Eξ)| < |λ1(Eκ, Eξ)|, if i 6= 1;

(3) |λ1(Eκ, Eξ)| < 1.

The proof of Theorem 4 is quite similar to the proof of the second criterion of Theorem 3.
Let us return to Example 8. It is easy to see from formulas (38) that for 0< κ <

1
4(2−

√
3) the amplification matrix has two different real eigenvalues, andλ1 = 1 for

ξ = 0, 2π andλ1 < 1 for ξ ∈ [δ, 2π − δ], whereδ > 0 is arbitrarily small. Therefore, the
conditions of Theorem 4 are satisfied, and scheme (34) is locally uniformly stable in the
region 0< κ < 1

4(2−
√

3).

5. INVESTIGATION OF UNIFORM STABILITY OF DIFFERENCE SCHEMES

FOR THE EULER EQUATIONS

We have investigated above the uniform stability of a number of difference schemes
approximating the scalar partial differential equations of hyperbolic and parabolic type.
However, difference schemes approximating the Euler equations for the compressible in-
viscid gas are of more interest. This is related to the fact that one has to execute a large
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number of time steps in a number of applied problems in order to obtain a complete solution
of the problem. The examples of such problems are

• stationary problems solved by the pseudo-unsteady method;
• the problems of long-term weather forecast;
• the problems of hydrodynamic stability.

At the numerical solution of these problems it is very important to ensure that the difference
scheme first remains stable at large times and that the eigenoscillations or the errors intro-
duced by the difference scheme itself are sufficiently small during the overall calculation
and do not introduce distortions in the problem solution.

In this work, we restrict ourselves to the consideration of difference schemes approxi-
mating the Euler equations governing the one-dimensional flow of an inviscid compressible
gas. The divergence form of these equations is

∂w

∂t
+ ∂ f (w)

∂x
= 0, (107)

where

w =

 ρ

ρu

ρE

, f (w) =

 ρu

p+ ρu2

pu+ ρuE

. (108)

Herex is the Cartesian spatial coordinate,t is the time,ρ is the gas density,u is the velocity,
p is the pressure,E is the specific total energy,E = ε + u2

2 , andε is the specific internal
energy. We will assume that the equation of statep = F(ρ, ε) is used to complete the
system (107), (108), whereF is a given function.

The nondivergence form of the Euler equations (107)–(108) is

∂w

∂t
+ A

∂w

∂x
= 0, (109)

whereA = A(w) = ∂ f (w)/∂w. Because we will use the Fourier method for the stability
analysis of difference schemes approximating the system (107), (108), we will have to
linearize the difference equations. The linearized difference equations indeed approximate
the system (109), where the matrixA is assumed to be constant. Therefore, we will write
down the difference schemes directly for system (109). We at first consider an example of
a first-order difference scheme: the Lax–Friedrichs scheme [26]:

wn+1
j = 1

2

(
wn

j−1+ wn
j+1

)− τ

2h
A
(
wn

j+1− wn
j−1

)
. (110)

The amplification matrixG of scheme (110) has the form

G = cosξ I −
(
τ

h
i sinξ

)
A, (111)

whereξ = kh, andk is the real wavenumber. As is known [27], the von Neumann stability
condition of scheme (110) has the form

(|u| + c)τ/h ≤ 1. (112)



744 SCOBELEV AND VOROZHTSOV

FIG. 8. The Lax–Friedrichs scheme (110). The modules of eigenvaluesγi as functions ofξ atκ1 = 0.4, κ2 =
0.5: (– – –)|γ1(Eκ, ξ)|; (· · ·) |γ2(Eκ, ξ)|; (——) |γ3(Eκ, ξ)|.

Let T be the matrix of eigenvectors corresponding to matrixA. Then, as is known, the
matrix A may be reduced to the diagonal form

A0 = T AT−1 = diag(µ1, µ2, µ3), (113)

with the aid of similarity transformation, whereµ1, µ2, µ3 are the eigenvalues of matrix
A = ∂ f (w)/∂w. As is known [1, 27],

µ1 = u, µ2 = u+ c, µ3 = u− c, (114)

wherec is the sound velocity. Thus, the matrixG (111) belongs to the class of diagonalizable
amplification matrices. It is well known for such matrices that the von Neumann necessary
stability condition is also sufficient for difference scheme stability (see also Theorem 1
above).

Let us investigate the question of the uniform stability of scheme (110). A direct compu-
tation of the eigenvaluesγi of the matrixG∗G has shown that the first criterion of Theorem 3
is not satisfied (see Fig. 8).

Consider the second criterion. We obtain with regard for (110) the expressions for the
eigenvaluesλi (Eκ, Eξ) of matrix G,

λ1(Eκ, Eξ) = cosξ − i (κ1+ κ2) sinξ,

λ2(Eκ, Eξ) = cosξ − i κ2 sinξ, (115)

λ3(Eκ, Eξ) = cosξ − i (κ2− κ1) sinξ,

where

Eκ = (κ1, κ2), κ1 = cτ

h
, κ2 = uτ

h
. (116)

We present in Fig. 9 the graph of|λi (Eκ, Eξ)| (i = 1, 2, 3) for the caseu 6= 0, u 6= c. It is seen
that the|λi (Eκ, Eξ)| coincide and are equal to unity at pointsξ = 0, ξ = π, ξ = 2π . It can
be seen from Fig. 8 that

max
ξ∈[0,δ]

|γi (Eκ, Eξ)| > 1
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FIG. 9. The Lax–Friedrichs scheme (110). The modules of eigenvalues as functions ofξ atκ1 = 0.4, κ2 = 0.5:
(– – –)|λ1(Eκ, ξ)|; (· · ·) |λ2(Eκ, ξ)|; (——) |λ3(Eκ, ξ)|.

in the neighborhood of pointξ = 0: ξ ∈ [0, δ], whereδ > 0 is arbitrarily small. Therefore,
criterion 2 of Theorem 3 is also not satisfied.

The conditions of Theorem 4 are also not satisfied, because the|λi (Eκ, Eξ)| coincide and
are equal to unity at pointξ = π . Therefore, it is to be expected that scheme (110) is neither
uniformly stable nor locally uniformly stable. The numerical computations of‖Gn‖ as a
function ofn confirm this conclusion. Note that‖Gn‖ depends not only on the nondimen-
sional parameters (116) but also on the dimensional parameterr = τ/h. In the present
work, the basic numerical results are presented forr = 1, because at different values ofr
the picture does not change qualitatively.

We present in Fig. 10 the graphs of‖Gn‖ at different values ofξ from a small neighbor-
hood ofπ . It may be seen that asξ approaches the valueξ = π the regime of a uniform decay
of ‖Gn‖ begins at larger valuesn = n1. The numerical computations show thatn1(ξ)→∞
at ξ → π .

Thus, in the case whereu 6= 0, u 6= c, the scheme (110) is not locally uniformly stable.
In the numerical computations using this scheme, the spurious oscillations may arise with
the wave numbers that are close toπ/h.

The case of transonic flowu = c (κ2 = κ1) does not differ qualitatively from the foregoing
case. The condition of a locally uniform stability is violated as before in the neighborhood
of point ξ = π .

As can be seen from (115), in the caseu = 0 (κ2 = 0) there exist two complex conju-
gate eigenvaluesλ1 andλ3, which have the same maximum modulus. The conditions of

FIG. 10. The Lax–Friedrichs scheme (110). The graphs of‖Gn‖ as functions of the numbern of time steps:
(a) ξ = 1.1π ; (b) ξ = 1.03π .
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Theorem 4 are violated at all values ofξ . Therefore, the scheme can oscillate with any finite
wave length.

Now consider an example of a second-order Lax–Wendroff difference scheme for system
(109) [1, 27, 28]

wn+1
j = wn

j −
τ

2h
A
(
wn

j+1− wn
j−1

)+ τ 2

2h2
A2
(
wn

j+1− 2wn
j + wn

j−1

)
. (117)

The amplification matrixG for scheme (117) has the form

G = I −
(τ

h
i sinξ

)
A+ τ

2

h2
(cosξ − 1)A2. (118)

The eigenvaluesλ1, λ2, λ3 of matrix (118) are given by

λ1(Eκ, ξ) = 1− i κ2 sinξ + (cosξ − 1)κ2
2,

λ2(Eκ, ξ) = 1− i (κ1+ κ2) sinξ + (cosξ − 1)(κ1+ κ2)
2, (119)

λ3(Eκ, ξ) = 1− i (κ2− κ1) sinξ + (cosξ − 1)(κ2− κ1)
2,

where the vectorEκ is determined in accordance with (116). The von Neumann necessary
stability condition also has the form (112), or in terms ofκ1, κ2,

|κ2| + κ1 ≤ 1. (120)

The matrixG for this scheme is also diagonalizable; therefore, the difference scheme (117)
is stable in the region (120).

A direct calculation of the eigenvaluesγi of matrix G∗G shows that max|γi | > 1 for all
values 0< ξ < 2π ; consequently, the first criterion of Theorem 3 is not satisfied. Let us
show that criterion 2 of Theorem 3 is also not satisfied. Let us study the behavior of the
eigenvaluesλi (Eκ, ξ). We show in Fig. 11a the graphs of the eigenvalues atu 6= 0, u 6= c.
It can be seen that the eigenvalues coincide atξ = 0, ξ = 2π : λ1 = λ2 = λ3 = 1. Because
max|γi | > 1 in any arbitrarily small neighborhoods of pointsξ = 0, 2π , the first condition

FIG. 11. The Lax–Wendroff scheme (117). The modules of eigenvalues as functions ofξ : (a)κ1 = 0.4, κ2 =
0.5; (b)κ1 = κ2 = 0.4. (– – –)|λ1(Eκ, ξ)|; (· · ·) |λ2(Eκ, ξ)|; (——) |λ3(Eκ, ξ)|.
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of Criterion 2 is not satisfied. Therefore, it is to be expected that scheme (117) is not
uniformly stable.

Because the eigenvaluesλi (Eκ, Eξ) of matrix G have different absolute values for allξ ∈
[δ, 2π − δ], whereδ > 0 is arbitrarily small, the conditions of Theorem 4 are satisfied, and
scheme (117) is locally uniformly stable atu 6= 0, u 6= c.

Consider the caseu = c (the transonic flow regime). The graphs of the eigenvalues are
presented in Fig. 11b. It is seen from (119) that the maximum eigenvalueλ3 = 1 in the
overall intervalξ ∈ [0, 2π ]. Consequently, at the parameter valuesκ2 = κ1 the scheme
(117) is no longer locally uniformly stable, and the appearance of spurious oscillations with
any wavelength becomes possible.

The same picture is observed atu = 0 (κ2 = 0). The eigenvalueλ1, which is equal to
unity for all ξ , now becomes the maximum one.

Summarizing the obtained results, one can assert that scheme (117) is locally uniformly
stable in the region

|κ2| + κ1 ≤ 1, κ2 6= 0, κ2 6= κ1, (121)

and it is stable in conventional sense atκ2 = 0 orκ2 = κ1 if |κ2| + κ1 ≤ 1.
A comparative analysis of the Lax–Friedrichs scheme (110) and the Lax–Wendroff

scheme (117) shows that scheme (117) is better on the whole than scheme (110), because it
is locally uniformly stable almost in the total stability region (121). Atu = c the situation,
however, changes, because scheme (110) allows the generation of oscillations only with the
wave numbers close toπ/h, whereas scheme (117) may give rise to spurious oscillations
with any wavelength. An equally poor behavior is demonstrated by both schemes (110)
and (117) in the case of stagnation flow, whenu ≈ 0. In this case, both schemes generate
oscillations whose period depends onκ1 andξ . Because the gas flow is certainly subsonic
in the stagnation zone itself and in its neighborhood, the scheme oscillations propagate
along the characteristics inside the spatial computational region and can distort the solution
in the overall region at sufficiently large values ofn, although the computational process
will remain stable. Therefore, it is not desirable to apply schemes (110) and (117) to those
problems of gas dynamics, where there are the subregions of stagnation.

A locally uniformly stable scheme is of course better than a simply stable scheme. The
valuen0 in Definition 1 characterizing the passage to the regime of uniform stability may,
however, be sufficiently large even at not very small values ofξ , as the analysis of scheme
(117) has shown. We present in Fig. 12 the graphs of the quantity‖Gn‖ atξ = π

3 . It can be

FIG. 12. The Lax–Wendroff scheme (117). The graphs of‖Gn‖ as functions of the numbern of time steps at
κ1 = 0.4, κ2 = 0.5, ξ = π/3: (a)r = 1; (b) r = 0.5.
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FIG. 13. The Lax–Wendroff scheme (117). The graph of‖Gn‖ as a function of the numbern of time steps at
κ1 = 0.4, κ2 = 0.5, r = 1, ξ = π/5.

seen from Fig. 12a that one must setn0 ≈ 230 in Definition 1 atr = 1. At r = 0.5 one has
to increase the value ofn0; see Fig. 12b. It is seen from Fig. 13 that at a further reduction of
ξ there is no passage of‖Gn‖ to the uniform stability regime even atn = 1000. Therefore,
it is desirable to have a difference scheme possessing uniform stability.

Consider the question of how one could improve the Lax–Friedrichs scheme and the
Lax–Wendroff scheme and ensure their uniform stability at allξ . The artificial dissipation
terms are known to smooth out the numerical solution. Therefore, one could expect that
their use in the difference scheme would smooth out also the graph of‖Gn‖, damping the
oscillations of this quantity.

Following [29] let us introduce the artificial dissipatorD in the system (109)

∂w

∂t
+ A

∂w

∂x
= D,

where

D = κ(2) h
2

τ

∂2w

∂x2
− κ(4) h

4

τ

∂4w

∂x4
. (122)

Hereκ(2) ≥ 0 andκ(4) ≥ 0 are the artificial dissipation coefficients. The Lax–Wendroff
scheme (117) is then modified as

wn+1
j = wn

j −
τ

2h
A
(
wn

j+1− wn
j−1

)+ τ 2

2h2
A2
(
wn

j+1− 2wn
j + wn

j−1

)+ τDn
j . (123)

Assume that the difference approximationDn
j of the artificial dissipator (122) has the form

Dn
j =

q2∑
k=−q1

ckw
n
j+k, (124)

whereq1 ≥ 0, q2 ≥ 0, q1+ q2 > 0, and the coefficientsck depend onκ(2) andκ(4). To
ensure vanishing of the quantityDn

j on a constant grid functionun, we require satisfaction
of the equality

q2∑
k=−q1

ck = 0 . (125)
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The amplification matrixG of scheme (123), (124) has the form

G = I −
(
τ

h
i sinξ

)
A+ τ

2

h2
(cosξ − 1)A2+ τ

q2∑
k=−q1

ckeikξ . (126)

It follows from (126) with regard for (125) that atξ = 0 andξ = 2π the expression for
matrix G (126) coincides with expression (118), which the matrixG has in the absence
of artificial dissipator. It follows from (126) that the matrixG is a continuous function of
variableξ . Therefore, atξ ≈ 0 the behavior of quantity‖Gn‖ corresponding to scheme
(123), (124) will be qualitatively the same as in the case of the scheme without the artificial
dissipator. Thus, the introduction of dissipator (122) does not make the Lax–Wendroff
scheme uniformly stable in the sense of Definition 1.

A comparison of the schemes considered in Examples 3 and 4 points to another possibility
for the construction of uniformly stable difference schemes. We recall that the Runge–Kutta
scheme (45) for the two-dimensional acoustics equations (42) was considered in Example 3.
The numerical computations have shown that this scheme is not uniformly stable. However,
after the symmetrization of the original acoustics equations, the corresponding Runge–
Kutta scheme has become uniformly stable, because its amplification matrix has become a
normal matrix.

Thus, the symmetrization of the original differential equations is one of the possible ways
for constructing the uniformly stable difference schemes.

6. CONCLUSION

We have proposed two new criteria of the sufficiency of the von Neumann criterion for
stability of difference schemes. These criteria are the extensions of the well-known and
widely accepted condition for the uniform diagonalizability of the amplification matrix
G. The merits of these criteria are their constructive character and the simplicity of their
realization especially with the aid of symbolic computations on a computer.

In the second part of the present work, we propose new concepts, the uniform stability
and the locally uniform stability. As shown above, these concepts are related to the oscil-
lations arising in the numerical solution of many physical problems. The problem of the
suppression of oscillations is of great importance especially in those problems, where there
are instabilities and bifurcations of the solutions. The problem of laminar–turbulent transi-
tion is one of practical importance. As was noted in [30], besides the well-known distortion
of the velocity field by the scheme viscosity, a new unpleasant phenomenon was revealed
recently: the appearance of spurious oscillations in the flow. This effect is the principal one
for the direct numerical modeling of laminar–turbulent transition, and it is unfortunately
almost impossible to control it. The appearance of the spurious oscillations is especially
dangerous for a rapid, “explosive” character of the turbulence onset, for example, in a plane
channel. This leads to a significant error in the determination of the time and location of the
turbulence onset and also distorts considerably the turbulent velocity field. It is also noted
that distortions at small scales inevitably cause large-scale distortions. It is noted in [30] in
conclusion that the problem of overcoming the effects of spurious oscillations is not solved
and is a difficult problem.

Another class of problems, where the oscillations may distort the solution significantly, is
gas dynamics problems with stagnation regions, which were already mentioned above. As
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was shown above, the stagnation zone may be a source of scheme oscillations. Because the
gas flow is subsonic in the stagnation zone and in its neighborhood the scheme oscillations
propagate along the characteristics to the overall computational region and can distort the
solution significantly.

The spurious oscillations may cause certain difficulties also for the numerical solution of
stationary problems by the pseudo-unsteady method.

The results obtained in the present work (Theorems 3 and 4) give constructive methods
for the control of scheme oscillations. In contrast with the investigation of conventional
stability, where it is sufficient to analyze the behavior of the maximum eigenvalue of the
amplification matrix, it is necessary to analyze the overall spectrum for the investigation
of uniform stability and locally uniform stability. This problem is nevertheless solvable by
the available advanced means of computer algebra. In our opinion, another important result
of the present work is that Theorems 3 and 4 give constructive criteria for the construction
of efficient difference schemes, that is, such schemes whose oscillations either weakly
affect the solution behavior (locally uniformly stable schemes) or are completely absent
(uniformly stable schemes). In particular, it has been shown above that the symmetrization
of the original differential equations is one of the possible ways for the construction of
uniformly stable difference schemes.

Despite the fact that Theorems 3 and 4 were formulated for the difference schemes
with constant coefficients, they can be applied also to difference schemes with variable
coefficients in the approximation of frozen coefficients, as was demonstrated in Section 5
for the one-dimensional Euler equations. For the multidimensional fluid dynamics prob-
lems, the mathematics does not become too complicated. Only the execution of the cor-
responding analytic calculations becomes more complicated. As was mentioned repeat-
edly above, the computer algebra systems may prove to be very helpful here. The in-
vestigation of uniform stability of the advanced difference schemes for the multidimen-
sional fluid dynamics problems is a separate task, which will be the subject of our further
research.

REFERENCES

1. R. Richtmyer and K. W. Morton,Difference Methods for Initial-Value Problems, 2nd ed. (Interscience, New
York, 1967).

2. S. K. Godunov and V. S. Ryabenkii,Difference Schemes: An Introduction to the Underlying Theory, Studies
in Mathematics and Its Applications, 19 (Elsevier, New York, 1987).

3. B. L. Roz̆destvenskiĭ and N. N. Janenko,Systems of Quasilinear Equations and Their Applications to Gas
Dynamics, Translations of Mathematical Monographs, Vol. 55 (American Mathematical Society, Providence,
1983).

4. J. C. Strikwerda,Finite Difference Schemes and Partial Differential Equations(Wadsworth & Brooks/Cole
Advanced Books & Software, Pacific Grove, CA, 1989).

5. B. Gustafsson, H.-O. Kreiss, and J. Oliger,Time Dependent Problems and Difference Methods(Wiley, New
York, 1995).
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